

Business needs are the most significant driver of change. The ability to do better with less and

deliver it sooner will differentiate leading and successful companies from the rest.

When a competitor rolls out relevant features, faster and with better quality than you, you’re

eventually going to lose market share. This is exactly why Agile Development was born: the need to

move quicker and address ever-changing requirements, while ensuring optimum quality and dealing

with limited resources. You just can't wait those six months until the next roll-out or release. The

Waterfall methodology's big release concept doesn’t cut it anymore. Agility is what is expected from

technology companies and IT divisions.

The next natural step from Agile was to find a way to take Agile to production by linking

development with operations. This

has given rise to DevOps.

To effectively master Agile sprint

deployments and practice DevOps,

one needs to be able to implement

deployment and process automation.

Otherwise, deployments and releases

will require manual steps and

processes, which are not always

accurately repeatable, are prone to

human errors, and cannot be handled

with high frequency.

Continuous Integration, Continuous Delivery, and Continuous Deployment are the common

principles and practices for structurally handling the process of automation, and setting ground rules

for the many participants involved in the development, building, testing, and release of software

update processes.

These principles are not new, but they are gaining traction and adoption, as they prove their benefits

- just like Agile development did some years ago.

As a set of principles and practices, Continuous Integration, Continuous Delivery, and Continuous
Deployment are not a case of "one size fit all". It is important to understand that every company
might have its own unique challenges, and these practices should be tuned to fit organizational
structure and culture.

Continuous Integration is designed to streamline
development and prevent integration problems.
This goal is usually achieved with the help of build
servers. These servers receive code changes from the
version control repository, automatically build it and
run unit tests to verify the changes, and ensure quick
feedback to the developers. Unit tests might run from
time to time, or even after each change has been
committed (checked-in), thus preventing or quickly
alerting about code changes that might break other code, or may fail to pass tests.

In addition to running code-centric unit tests to ensure code completeness, running
integration tests or application level regression test will help complete the picture, and
guarantee quality levels altogether.

Quick feedback on integration problems, and automated tests to ensure quality help to
increase visibility into overall development and save time locating problems. This, in turn,
contributes to overall savings in development and integration time and higher quality.

Continuous Delivery is the next automation step after Continuous Integration. While striving
to become efficient, lean, and even more agile, you can start planning and making sure each
change is "releasable", so a tested build
is always ready for deployment.

Moving changes between the different
lifecycle stages should be done
automatically. The overall process is
demonstrated in the diagram on the
right:

Checking in changes in development  building the deploy package  running unit tests 
moving the changes to testing, and later to a staging environment  running acceptance
tests.

In case of a failure, one should get automated alerts about the problem, and then go back to
development, and restart the cycle.

Once the process is completed, a fully-tested application is available to be released to
production, with a click of a button. The actual deployment to production will be manually
actuated, followed by a re-running of the regression test.

As all changes are tested and accounted for, and deployment between previous lifecycle
stages had also been tested, the actual deployment to production becomes much easier, and
significantly less risky.

Following Continuous Delivery practices means one always has a releasable version at hand.
This enables timely releases based on business decisions, time-to-market, etc.

Continuous Deployment takes the next step, pushing changes automatically to production
(unlike Continuous Delivery) and running the concluding set of tests there.

Leveraging Continuous Deployment in a SaaS type of application or product (like Facebook,
Amazon, etc.) makes a lot of sense, as a company can stream and throttle traffic to a new
feature, do A/B testing to evaluate new changes, run an old release side by side with the
new release, and measure and manage changes with confidence.

Continuous Deployment may be risky and doesn't always make sense from a business
perspective, unlike Continuous Delivery, which is highly beneficial and plays a central role in
the implementation of DevOps.

Success from continuous processes is usually clear, and focuses around these areas:
1. More rapid changes – being able to react quicker
2. Less changes backed out – higher code quality, quicker time to market
3. More stable releases – less defects making it out to end customers
4. Better collaboration between Development and Operations (DevOps)

By automating everything and moving tested, focused updates and process “upstream”,
you'll achieve better service, happier customers, and a stronger bottom line.

Dealing with database deployments is tricky. Unlike other software components, such as
code or compiled code, a database is not a collection of files. The database is a container of
your most valued asset – the business data, which must be preserved. It holds all application
content, customer transactions, etc. In order to promote database changes, a transition code
needs to be developed - scripts to handle database schema structure (table structure),
database code (procedures, functions, etc.), and content used by the application (metadata,
lookup content, or parameters tables).

Achieving automation by scripting database object change-scripts into traditional version
control is limited, inflexible, disconnected from the database itself, and may be inaccurate
and prone to missing updates within the target environment because of conflicting changes.
Using "compare & sync" tools is a risky thing to automate. The two concepts do not work
well together, as one is unaware of the other.

DBAs, being both well aware of database deployment pitfalls and bearers of the scars of the
most inopportune break downs, tend to shy away from automation-based processes, as they
are not confident in the accuracy of the automation script generators. Nor are they
confident in the ability of pre-prepared, manually-generated scripts to remain true any time
after they were developed. In order to avoid conflicts, they often take things into their own
hands. The path of carefully examining changes and manually creating change scripts as
close to the deployment event as possible seems less frustrating by comparison.
A better solution had to be found.

In order to take a database into proper automation, one must factor in the following:

1. Proper database version control, dealing with databases’ unique challenges (structure,
code and content), while enforcing a single work process. This prevents any out-of process-
changes, code overrides, or incomplete updates .

2. Leverage proven version control best
practices (check in & out, changes, etc.) for
complete information about who was
doing what, when, and why. Making sure
changes are perfectly documented is the
basis for later deploying them.

3. Harmony with task-based development
allows for correlation of each version
control change with a change request or a
trouble ticket. This enables task-based
deployments, partial deployments, and last
minute scope changes to be coordinated
between code and database.

4. Ensure configuration management and
consistency, so every development environment, branch, trunk, sand-box, and testing or
production environment follows the same structure and matching status. This also ensures
that any deviation and difference is well accounted for.

5. Scriptable interfaces, to deal with the automation of deployment processes, providing
repeatable results every single time. Even the most sophisticated solution becomes
cumbersome if you have to use the UI to do the same task over and over again .

6. Utilize reliable deployment script generators, which are capable of dealing with conflicts
and merges of database code, as well as cross-updates from other teams, while also ignoring
wrong code overrides. These must be fully integrated into the version control repository.

7. Provide automatically-generated development scripts on the fly to efficiently deploy
projects of any scope, from multi-schema mega-updates, to a single, task-based change and
its dependent objects.

8. Leverage labels before and after deployment of changes, to act as a safety-net/baseline,
so quick and easy roll-backs are always close at hand.

9. Seamless integration with other systems (ALM, change management/trouble tickets, build
servers, and release managers)

Implementing a solution to deal with these challenges enables easy integration with the rest
of the change and release processes, and helps one achieve complete end-to-end
Continuous Delivery.

The database creates a real challenge for automation, which is why organizations participate
in continuous processes. Scripting database object change scripts into traditional version
control solutions, or using "compare & sync" tools can be plain risky from an automation
perspective, as the two concepts are unaware of each other. A better solution needs to be
implemented, one that promotes Continuous Delivery and DevOps for the database.

Database Continuous Delivery should follow the proven best practices of change
management, enforcing a single change process over the database, and enabling efficient
resolution of deployment conflicts to eliminate the risk of code overrides, cross updates and
merges of code, while plugging into the rest of the release process.

https://www.facebook.com/dbmaestro
https://twitter.com/dbMaestro
https://plus.google.com/u/0/+Dbmaestro/about
https://www.linkedin.com/company/457315
http://www.dbmaestro.com/subscribe/
https://www.youtube.com/user/dbMaestroDemo

