

Business needs are the most significant driver of change. The ability to do more with less

and deliver sooner is what differentiates leading and successful companies from the rest.

When a competitor delivers relevant features, faster and with higher quality, you’re

eventually going to lose market share. Investing in sales and marketing campaigns to

compensate for your product is expensive and unreliable and you may find that customers

are moving to the superior product despite those efforts.

This white paper presents the critical factors that enable a DevOps approach for the

Database, a pro-active coordination and collaboration between development and operations

teams, to address the tensions and provide for safe, successful, and rapid deployments.

Software development has benefited from change management and DevOps methodologies

for a long while. Now is the time for databases to benefit as well. You'll learn in this white

paper exactly how the tried and tested best practices of DevOps for software can be

modified to bring their advantages to database deployments.

http://www.dbmaestro.com/products-solutions/scm-decm/
http://www.dbmaestro.com/2013/09/top-ten-tips-for-implementing-devops-part-1/
http://www.dbmaestro.com/products-solutions/deployment-automation/

The Waterfall approach to development, which only allowed 2-3 upgrades a year, stopped

meeting clients' needs a long time ago. Thus the Agile approach was born. Agile presents a

development approach that lets companies move more quickly and deal with ever-changing

requirements, all while assuring the highest quality output with fewer resources. Technology

companies and IT divisions use the agile development approach, rolling more frequent

software and database upgrades, in order to be more responsive to client and market

demands. Agile wasn't a revolution; it was a natural evolution responding to changing

business needs.

Yet, as Agile delivered shorter and smoother development cycles, operations struggled to

keep up. The short agile production cycles left operations with only two to four weeks

between releases to update the production environment and customer sites. Such

accelerated schedules only increased the stress and risk of a new software release where

multiple teams, handling and considering hundreds of changes to dozen systems and sub-

systems, and created the potential of a catastrophic mistake.

The operations chief’s interest is to maintain a stable and healthy application conflicts with

development's main goal to constantly upgrade applications in response to changing

business and customer demands. A way to balance the competing interests of development

and operations so they could work more closely together was required: Enter DevOps.

The DevOps approach, as the natural next evolutionary step after Agile, is already

successfully used on software development projects. A key source of this success has been

DevOps reliance on automation to control the deployment process. However, the

differences between the application code and the database code require finding a DevOps

automation process that addresses the unique challenges of database deployment. Only

then can DevOps truly mitigate the risks associated with high-frequency database updates.

Using the DevOps approach to bridge the Dev/Ops divide is part cultural change and part

technological change. The cultural changes required are more effective communication and

collaboration between Dev and Ops. However, while fostering a more productive

relationship between Dev and Ops will surely contribute to a healthier and more productive

organization, it isn't enough to move quality upgrades into production on a timely schedule.

Technology and workflow concepts must support this change, or you will be left with a lot

of good will, but not much on the bottom line. You need to increase overall efficiency and

reduce the risk inherent in frequent changes and releases.

The DevOps concepts which achieve both increased efficiency and reduced risk are:

1. Adopting Agile over Waterfall: Committing to working in a cycle made up of smaller,

more focused and iterative blocks of development, resulting in quicker time to

market.

http://www.dbmaestro.com/products-solutions/risk-mitigation/

2. Better collaboration and coordination: Using key personnel who ensure everyone

across teams and departments are in sync and act as the critical pivot points driving

change adoption, and using contemporary collaboration tools to increase both teams'

familiarity with the needs, risks and concerns of the other.

3. Automation: Compiling detailed information for each change and using automation-

based repeatability will drive safer and less error-prone deployments. The success of

frequent changes cannot rely on people's ability to remember everything that's

already been done and being able to identify the full scope of what the current

change might influence. The key is eliminating as much manual work as possible.

Automation and accessible information are the basic requirements for healthy repeatable,

risk-mitigated deployments. Current best practices of software development automation

and information collection include:

Change Management

Version control is the most basic means of visibility into what is being changed, and who is

driving that change.

Task Based Development

Connecting a development project to the change request or trouble ticket that launched the

change. Responding to client feedback with real action is a great plus in serving your market

and should be tracked.

Configuration Management and Consistency

Ability to ensure that everyone is working in the same environment; one that resembles the

current production environments as closely as possible.

Testing

Testing automation is the best way to ensure that the application is as fully tested as

possible. Since development cycles are too short to re-test everything as was done in

waterfall projects, automating the smaller testing scope used on Agile sprints contributes to

a more stable application.

Reusable Deployment Packages

When you script a task or configure it in a system, it is there forever, fine-tuned and working

exactly as you expect it. This allows you to reuse code, avoid manually repeating tasks and

opening the door to errors.

Error Handling

Using automation packages that are reliable and safe. A well-written deployment package is

aware of its environment and has appropriate mechanisms for error handling, conflict

recognition and unexpected occurrences.

Continuous Delivery

Continuous Delivery is a concept in software and database development that calls for a

well-defined process, feedback loop, and automation. Continuous processes enable quicker

delivery of the most important improvements and fixes, and accelerate delivery of new

enhancements.

The ultimate goal of automation is reliable repeatability. Automation is the critical method

by which you can ensure changes are propagated through all the necessary phases, from the

single developer's sand-box to a team or project integration environment, and then on to

testing. Having access to and using the same steps and scripts that have already successfully

tested in 'lower' environments means moving into production with less anxiety.

Clearly, deployment automation is critical to practicing effective DevOps. Without

deployment automation, releases still require a lot of manual steps and processes. Processes

and steps that aren't reliably repeatable, are prone to human errors, and can't be handled

consistently with high frequency.

However, the software best practices can't simply be grafted onto database deployments.

Unlike software code, a database isn't just a collection of files. You can't simply copy a

database among your different development, testing, and production environments.

Deploying a database also presents a greater business risk since it holds your most valued

asset – your data.

In order to capitalize on DevOps automation advantages for databases and to promote

database changes safely and quickly, all the particular components of a database; its tables,

functions, and content, need to be protected.

Now, most companies address the particular challenge of frequent database upgrades either

by scripting database objects or using the Compare & Sync method. However, both these

approaches have shortcomings.

Using this process, teams script database objects and store these scripts in a traditional

software version control system. However, scripts in a version control system aren't

connected to the actual database objects they represent, as these two systems are

completely separate, and change traceability is dependent on manual non-enforced steps.

Out of process chances, code overrides in the database and non-documented changes are

not uncommon. Furthermore, the database content, functions, and meta-data aren't usually

a part of the version control system in the first place.

The result is that coding and testing of the database code is done disconnected from any

real benefits intended by the coding best practices under a true version control system.

This scripting approach also relies on manually coded scripts. Manual scripting leaves the

door open to the risks of missed or faulty dependencies, and updates crashing against

changes made in the target environment by another team.

An early attempt to automate database upgrades from the last decade involved using tools

to create the transition code, known as "Compare & Sync." In this method, a comparison

tool examines database objects in a source environment and compares them to the target

environment. If a difference is discovered, the tool automatically writes a script to update

the target object as a copy of the source object.

However, the compare tool is completely unaware of changes documented in the version

control any other approved updates that have occurred in the target environment after

development on the first object had begun. If you need to merge code from different teams,

assuming the teams are aware of each other's work, you need to merge the code manually.

In other words, the automated "Compare & Sync" method still requires a high degree of

manual inspection and script writing, as well as detailed knowledge and communication

regarding each change in the deployment process. Otherwise, the predictable mishaps of

manual deployments, like overriding current production objects with out-of-date

development objects, remain present.

A better solution for automating database deployment had to be found. One that extended

the best practices of automated software DevOps change management with adjustments

addressing the unique challenges of database updates. To implement effective DevOps

automation on databases, an automation solution must:

 Enable proper database version control for all types of database objects structure,

code, and content.

 Enforce a single work process that prevents any out-of-process changes, code

overrides, or incomplete updates.

 Leverage proven version control best practices to create a complete audit trail as to

who did what, when and why.

 Work harmoniously with task based development, attaching each version control

change with a change request or a trouble ticket.

 Ensure configuration management and consistency so all development, testing, and

production environments are aligned, or any deviation and difference is well-

documented and explained.

 Automate script development to provide reliable deployment scripts with repeatable

results every single time.

 Be fully integrated with other critical systems, such as application life cycle, change

management / trouble tickets, and release managers

http://www.dbmaestro.com/products-solutions/enforced-database-source-control/
http://www.dbmaestro.com/products-solutions/change-policy-enforcement/

In addition, any successful DevOps database automation solution must be capable of

intelligently dealing with conflicts and merges of code and cross updates from other teams.

The solution must be able to ignore wrong code overrides and give the user ultimate control

over which changes and merges are pushed out.

In order to achieve these goals, the solution must be able to conduct a three-way analysis on

the source (that is, the object after the development work is done), the original (or

"baseline") state, and the target (or "Production") environment, identifying the differences

among these three states. Team members, gaining full knowledge of the complete scope of

the project from the analysis, can review the results and options the solution presents to

resolve any discrepancies. The user selects what action, if any, should be taken on the

database. The solution then automatically generates the scripts to execute the chosen

actions.

In this way, the solution uses automated three-way analysis and automatic script

generation to eliminate both the potential for human error in manual script writing, and the

potential for technological error in automated object overrides.

Implementing a solution that encompasses all these automation features to meet the

particular challenges of database deployments would enable a company to practice a

DevOps approach to effective database automation and realize the following benefits:

 Reduced deployment costs through streamlining of development process

management

 Minimizing deployment risks by enforcing change policy and best practices, and

configuration management and consistency

 Improving responsiveness to customers and market needs with speedier roll-outs of

task-based development updates

 Enhancing cross-team communication with clear audit trails and transparency

regarding work done on objects and the state of different environments

DBmaestro offers a solution that incorporates DevOps automation best practices

specifically designed for databases. Join one of our weekly no-strings-attached demos to see

for yourself how DBmaestro creates a controlled environment to manage safe database

development and deployments.

Pick a date that's most convenient for you and register for our free demo here.

https://www.facebook.com/dbmaestro
https://twitter.com/dbMaestro
https://plus.google.com/u/0/+Dbmaestro/about
https://www.linkedin.com/company/457315
http://www.dbmaestro.com/subscribe/
https://www.youtube.com/user/dbMaestroDemo
http://www.dbmaestro.com/products-solutions/all-about-teamwork/
http://www2.dbmaestro.com/join-weekly-demo

