

Agile development is a major facet of an increasing number of modern organizations. Consumer

demand for instant gratification and top-notch service means developers are under constant

pressure to release bug-free applications and make continuous updates and improvements.

Development teams are constantly juggling multiple projects. With these demands comes the need

for a logical framework to organize and manage various development efforts, whether for multiple

projects or for various components of the same application. Enter branch methodologies.

This white paper discusses the various branch methodologies and merge scenarios used in

development, and the importance of using the same methodology for both application and database

development. Using mixed methodologies between application development and database

development creates unnecessary challenges, adding both time and complexity to the already-

rushed, already-complex development lifecycle. In today’s climate, the ability to automate

development, and merge and deploy changes rapidly – without introducing serious mistakes – relies

on using the same branch methodology for database development as you use for application

development.

Source control plays a vital role in software development; so vital that you will rarely encounter a

software project not relying on source control for the code. It quickly became a de facto basic

standard in the industry. Today, with Agile and DevOps teams often spread across several

continents, application releases and deliveries are expected to be faster than ever before. These

teams therefore need a way to support their parallel development and maintain source control.

Without the capability to work on two or more distinct lines of development at the same time, it is

next to impossible to successfully release maintenance updates and bug fixes for version 1.0 without

inadvertently releasing developments-in-progress to your yet-unreleased version 2.0. It is critical,

therefore, that both of these processes can be maintained, managed, and developed without the risk

of interference from one another.

The primary method for development teams to simultaneously work on different elements of an

application, or on the same elements for different versions, is known as branching. The most

complex aspect of branching, however, is not keeping development tracks separate; rather, it is

merging changes originating from different branches. Source control tools provide this crucial

capability. As part of the merge process, source control technology can analyze the objects being

saved (text file, image, document, presentation, database object, etc.) and determine if identified

differences should be merged into a new baseline source code or not (as illustrated here

https://www.flickr.com/photos/jawspeak/5153884916).

https://www.flickr.com/photos/jawspeak/5153884916

There are multiple methodologies for conceptualizing how a particular project will be branched.

Atlassian, a successful enterprise software company, describes three primary branching

methodologies used by Agile development teams:

 Release Branching – Each development release is contained entirely within its own branch.

This methodology is an important part of supporting versioned software which is already on

the market, in order to differentiate maintenance for each version in its own distinct line of

development.

 Feature Branching – All the code changes for a specific feature are isolated in a distinct

branch, for the purposes of long-term development. Considered a more flexible methodology

by some developers, this method ensures that each change to a given feature is fully

developed, tested, and validated separately before being merged with a master branch or

trunk. Among the benefits of Feature Branching is the ability to selectively enable or disable

specific features at any point in the development and deployment cycle.

 Task/Bug/hotfix Branching – Also known as Issue Branching, each software issue or coding

bug is addressed on its own branch. Identifying branch files by the issue they address adds a

level of transparency and facilitates team communication, making it easy to determine which

issues are at what stage.

There are also other branching methodologies:

 Trunk Based Development – Containing elements of both Release and Feature Branching,

each release is recognized as its own branch and each branch contains a replica of the trunk.

However, only specific personnel are authorized to merge changes into the release branches.

 Team Branching – Distinct branches are created for each development team, especially for

teams that have multiple projects, feature groups, or distinct areas of functionality. While the

team branch is maintained by multiple developers, it may be divided further into feature or

task branches, for example, creating a multi-tiered hub-and-spoke design to your source

control.

These five methodologies are not all-inclusive, nor is there a “right” branching methodology.

However, some methods are, in fact, better suited for certain development situations or companies.

A small company that makes changes infrequently and has a small development team, for example,

may find less need for release branches than a major enterprise managing multiple versions and

changes several times a week.

https://www.atlassian.com/agile/branching/
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.branchmerge.commonpatterns.release
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.branchmerge.commonpatterns.feature
http://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://lostechies.com/derickbailey/2010/02/24/branching-strategies-when-to-branch-and-merge/

The most critical (and nerve-wracking) part of branching is actually the merge event. Therefore, as

each branching methodology has its own variation of merging and rebasing, a key consideration must

be how features and changes will be best merged and deployed down the line.

Branching
Methodology

When the Branch is
Created

When to Merge Rebasing (why and when)

Release Branching 1) When a version is being
released
2) When an issue needs to
be fixed in a previous
release

When the issue was
fixed

There is no need to
synchronize the most up-
to-date code to this
branch

Feature Branching Upon beginning the
development of a feature

When a feature is
ready for tests

When there is a need to
merge changes made in
different branches. The
database rebase is
completed while the
application code is being
rebased.

Task/Bug/Hotfix
Branching

Upon beginning a
development task

When a task is ready
for tests

When there is a need to
merge changes made in
different branches. The
database rebase is
completed while the
application code is being
rebased.

Trunk Based
Development

When a new release is
created

As determined by
Merge & Build
Manager

When there is a need to
merge changes made in
different branches,
because of application
dependencies. The
database rebase is
completed while the
application code is being
rebased.

Team Branching Upon the beginning of the
development phase

When the
development is
ready for tests

When there is a need to
merge changes made in
different teams' branches,
because of application
dependencies. The
database rebase is
completed while the
application code is being
rebased.

It’s not uncommon for database development teams to work today without branching, which can

completely derail application releases. If the application development team uses, say, a Feature

Branching methodology, but the database development team doesn’t branch at all, then determining

which database changes must be merged with which new application feature or bug fix becomes a

daunting, time-consuming and error-prone task. It will be problematic for end users and new features

won’t work properly, if at all.

It simply doesn’t make sense.

So why would an organization develop their database without a branch methodology?

 Creating the branch – Branching databases is not as simple as branching application code.

While branching application code is as simple as copying files into a new directory, database

branching may require additional storage, new schemas, and cloning several instances or full

databases.

 Merging the branches – Once a database branch environment is created, you need to be

100% confident of its eventual merge into the application. However, file-based source

control tools work with scripts, and they lack the ability to directly read the metadata of the

merged environment (usually the trunk) from the database. This makes a merge process using

the all-important baseline analysis unpredictable.

Yet, since you need to update the database structure to support the application, it is preferable to

develop the database in parallel with the application code. For example, you cannot complete

application development that accesses a new column without first adding the column in the

database. This strong linkage requires both facets of development to use the same branching

methodology.

Using mixed branching methodologies in one application is a recipe for disaster,

as there are distinct merge procedures for each of the five possible

development methodologies. Therefore, in order to ensure that a complete and

coherent release reaches your end users, the application and database

branchings need to be congruent. Ignoring that limitation would be like building

a house mixing inches and centimeters, or baking a cake using pounds and

kilograms – a recipe for disaster.

For example, if you use the Task Branching methodology, then you must have a parallel task branch

for both the application and the database; otherwise, determining where database changes should be

merged becomes a time-consuming, tedious and risky effort. Likewise, using Trunk Branching for the

database when application development relies on Release Branching means that database and

application code changes do not coincide, for an unnecessarily messy, cumbersome, and

undependable merge process.

Using the same framework for database development as for application development streamlines

your merge process, makes it easy to detect changes that should not be merged, facilitates a

seamless workflow, and enables better collaboration between application and database development

teams. With that in mind, the method chosen to branch a database development environment and

merge database changes should be carefully chosen.

There are several ways to branch a database environment:

 Create an empty schema/database and use an appropriate source control solution to create

the objects and fill the static data.

 Create a backup or snapshot of the database for use as the starting point for the branch.

 Use a storage feature to quickly clone database pages.

 Use commercial tools such as Delphix and Actifio to create the branches.

Regarding the merging process, there is one question the infrastructure should address: What is the

origin of identified coding or database differences? If that cannot be determined, then you may

check in the wrong code or generate errors in the merged environment.

The best method of identifying the source of development changes is baseline-aware analysis. For

this kind of analysis, the source control tool compares the content of a given object in three

revisions: the current branch revision; the trunk revision; and the branch baseline revision. Then, the

tool can recommend an action - merge, ignore, or manually resolve an environment conflict.

In contrast, standard compare-and-sync tools fall short of identifying the source of differences

between the source and the target environments. This capability, however, is the key ingredient

necessary for true deployment automation. As a result, 70% of respondents in the 'Database

Development and Deployment Risks Survey Report' using compare-and-sync tools said they have to

manually review and correct sync results, as their tools cannot be trusted to automatically deploy

correctly.

Baseline-aware analysis provides the critical insights needed to facilitate trusted deployment

automation.

With the insights of baseline-aware analysis, you can turn to the process of merging database

environments. For this purpose, you need:

 A database environment into which you can merge the changes. This database environment

is required not only for source control, but also for running integration tests.

 An environment for the branch (this can be a label on the database source control).

 A way to support analysis for selective objects (to support a feature branch).

 A solution that can directly access the metadata from source control and from the database.

 A baseline-aware analysis, rather than a simple compare-and-sync.

Once you have those requirements you can merge the database environments just as you merge the

application code. For example:

Release Branching – Changes made in the release branch support a specific release and are merged

as needed. Baseline-aware analysis will identify conflicts and ignore objects that were updated for

separate releases.

Feature Branching – Changes made in the feature branch can be merged into the trunk environment,

while changes in other feature branches will be protected through a baseline-aware analysis.

Task/Bug/Hotfix Branching – The analyses will be performed only for objects that were assigned to

the selected tasks. Baseline-aware analysis will ignore changes made in the context of other tasks

and will alert developers of conflicts that require manual intervention.

Trunk Based Development – Changes made to a trunk branch are incorporated in a release branch

only with the approval of personnel with the proper permissions, such as a Merge and Build

Manager, and after baseline-aware analysis. This can include bug fixes, specific elements or

enhancements, depending on the organization.

http://www3.dbmaestro.com/database-deployment-and-development-risks-survey-report
http://www3.dbmaestro.com/database-deployment-and-development-risks-survey-report

Team Branching – Changes made in a single team branch can be merged into the trunk environment,

while changes in other team branches will be protected due to the baseline-aware analysis.

Ideally, every merge process should have its own baseline, representing the last time the

environment was merged. Using the wrong baseline can result in incorrect recommendations. The

following diagram illustrates how two feature branches should be merged to the trunk.

Every time a feature is merged into the trunk, the label becomes the baseline for the next merge. The

first baseline is the label used to create the branch.

Feature Branch Version Baseline Version

Feature A Ver 1A Branching A

Feature A Ver 2A Ver 1A

Feature B Ver 1B Branching 1B

Feature A Ver 3A Ver 2A

Feature A Ver 4A Ver 3A

Feature B Ver 2B Ver 1B

Feature A Ver 5A Ver 4A

When should the database branch environment be refreshed? Whenever you refresh the relevant

code files. The baseline of the last merge will define the refresh, differentiating between changes

made after the merge and changes made in the trunk (as the other branches merged in), with the

relevant changes merged into your refreshed branch.

As development teams grow larger and more complex, and the pressure to issue updates and

releases continues to grow, the various branching methodologies become increasingly valuable as

viable solutions for organizing development efforts across organizations, teams and projects.

While branch methodology eases the development process, merging changes continues to present a

challenge for development teams. Compare-and-sync tools offer some valuable feedback by

detecting changes between two environments, but these tools fail to identify the origin of such

changes. They therefore provide little value in determining which changes are safe to be deployed

and cannot be effectively automated. As a result, developers relying only on compare-and-sync

solutions may end up overriding critical changes introduced by another team or for another function

in a different branch.

The solution for streamlining development collaboration and making true automation possible for the

database, is baseline-aware analysis. By comparing not only the source and the target environments,

but also the baseline, tools offering baseline-aware analysis are the critical ingredient for modern

development teams working with any branching methodology. They also make seamless,

simultaneous database and application development possible, for the best possible deployment

outcomes.

https://www.facebook.com/dbmaestro
https://twitter.com/dbMaestro
https://plus.google.com/u/0/+Dbmaestro/about
https://www.linkedin.com/company/457315
http://www.dbmaestro.com/subscribe/
https://www.youtube.com/user/dbMaestroDemo

