
Using Microservices?
Don’t Forget the Database

By Brady Byrd, Senior Solution Architect

The microservices pattern is a hot item on the agenda for almost every development shop. The promise of
isolating specific pieces of an application into services simplifies development constraints, release cycles,
and design.

The question here is, what does that mean for databases? Bold statements like, “with microservices and
containers, there won’t be a need for formal deployment tools” are commonplace. Is this accurate? Should
this inspire a whole bunch of us to switch careers?

2

Breaking it down, typically a service will need some sort of persistent storage. There are
some cases where a service will simply broker information from other services as a
pass-thru, but this is less common. Services might share a database, but according to
the strict microservices paradigm, each service should be the owner of its data.

With that synopsis in mind, let’s look at what a release means from a database
perspective. The simple sales model from https://microservices.io, which includes
customers, orders, and product services all driven by a single web app, is a great
example and will be the backdrop for this discussion.

3

Let’s look back to old monolithic applications
which might have had one or two schema with
thousands of objects. There were constraints,
joins, triggers, and code objects like views and
stored procedures to enforce relational integrity.
In microservices, all of that has been moved into
the API and application code so that one team can
push updates to customer service and not have to
simultaneously update orders, pricing, and the
product catalog. If you’ve ever lived through an
integrated release at something like a large
insurance company, this is an attractive prospect.

The simplest case would be a release of just one
service. Because the API is versioned, the net
change for any consumer would be zero, unless
they are subscribing to new functionality in the
release and thus attach to the new API. That
means deploying changes in only the database
used by the service, great – that’s simple.

4

To add a degree of complexity, let’s suppose that the order and product services
were both being enhanced, and that orders needs to go out immediately after the
product release. Now there are two databases to update which also have to be
deployed in a specific order.

Because these transitions are not complete, and because dependencies in a large
enterprise go on and on, the chances are that the release involves changes to
both microservices and legacy applications. With regard to database release, this
means business as usual, you have to coordinate changes between schema and
applications are dependent on each other. So, unless you have made it all the
way to the land of milk and honey the database component can be complicated.

Consider a database change: a new table, a column for the relation, and several
indexes for performance. The change is first designed in a sandbox and then
deployed to a DEV environment. Let’s assume that there is a script that will make
the change which is also run in DEV. Typically, in a container strategy, the data
can perhaps live in the container in a DEV environment. Most data sets however,
require persistent storage. In a DevOps setting, the app and database engine can
be deployed together. The strategy for the database needs to change to
incrementally upgrade the structure and data.

5

Perhaps the environment model is a straightforward DEV, QA, STAGE, PROD progression and the
release requires the upgrade of several services. From a management perspective, all the connection
information for each service’s databases must be present in order to queue the changes to be applied to
each database. Even if the database is instantiated from a container, the latest development changes
need to be applied. Moreover, it is critical to assess the database version that the container is presenting.
In short, the technical needs and gotchas are numerous, so there is strong need for a tool to manage
database changes and detect versions across environments.

Now your fully-fledged microservices architecture is supporting your app and version 1.0 is sailing fine –
you’ve hit the big time. If you work in a large enterprise, all sorts of changes have happened.
“Operationalization” has occurred and there is a whole support infrastructure with monitoring, training
environments, and incident-response protocols. You probably have a separate release team managing
deployments which may not understand your development culture. They might be managing dozens (or
even hundreds) of applications in which your µService ecosystem is just one more item on the schedule.
Maybe the CI/CD pipeline reaches STAGE, but now, PROD is more formalized. Perhaps segregation of
duties requires that the dev team cannot touch the environment. The ability to communicate what
changes are needed and the order in which they should be run, as well as portable automation that can
operate in any environment (even locked down PROD), become a critical requirement.

6

For now, fussy databases are still part of the landscape. They contain metadata, structure, and underlying
data, and are large, unwieldy, and do not tolerate little mistakes very well. Modern application architectures
have simplified some of the processes and reduced dependency nightmares, which empowers teams to
release changes more frequently. So, the situation is better overall, but in no way eliminates the need for a
managed approach to database change. In fact, distributed architectures rely more heavily on coordination
and orchestration software when the business schedule for feature delivery is overlaid.

An essential part of this puzzle is database DevOps. Because microservices architecture is characterized by
enabling continuous delivery, employing DevOps for the database is a natural step for any
microservices-based operation. Want to discover how? Contact DBmaestro for a free demo and discover
the advantages of database DevOps.

7

